细胞

首个单细胞生物学基础大型语言模型,在超1000万个细胞进行预训练

编辑 | 紫罗生成式预训练模型在自然语言处理(NLP)和计算机视觉等领域取得了显著的成功。文本是由文字组成的,细胞可以用基因来表征。NLP 和单细胞生物学之间的另一个核心相似之处是,用于训练的公开可用的单细胞 RNA 测序(scRNA-seq)数据的规模庞大且不断增长。NLP 模型是否也能理解单细胞生物学的内在逻辑并发展「涌现思维」?近日,来自加拿大多伦多大学和彼得·蒙克心脏中心(Peter Munk Cardiac Centre)的研究人员,通过利用呈指数增长的单细胞测序数据,首次尝试对超过 1000 万个细胞进

山东大学团队提出基于异构图 Transformer 的单细胞生物网络推理

编辑 | 绿萝单细胞多组学 (scMulti-omics) 技术允许同时量化多种模态,以捕捉复杂分子机制和细胞异质性的复杂性。现有工具无法有效地推断出不同细胞类型中 active 生物网络以及这些网络对外部刺激的反应。在此,来自山东大学参与的多机构研究团队,开发了基于深度学习的单细胞数据多组学分析平台:DeepMAPS,用于从 scMulti-omics 进行生物网络推理。DeepMAPS 在异构图中对 scMulti-omics 进行建模,并使用多头图(multi-head graph)Transformer 以

每次放一个细胞,打印心脏或上千年,斯坦福大学如何加快3D打印心脏?

使用先进的 3D 打印技术,斯坦福大学研究者将由活细胞制成的糊状物转化为心脏和其他器官。

计算生物学家​Anne Carpenter谈:机器学习将高维的生物学问题简化

编译/凯霞今天,生物医学研究人员可以通过使用机器学习进行基于图像的分析,有效地对显微镜图像中的数千个细胞进行分类。计算生物学家 Anne Carpenter 是开发这些自动化工具的先驱。你不能通过封面来判断一本书,也就是,你不能以貌取人,至少我们是这么了解人的。然而,对于细胞来说,令人惊讶的是,事实并非如此。使用类似于计算机识别面部的机器学习方法,生物学家可以表征显微图像堆栈中的单个细胞。通过测量数以千计的可视化细胞特性——标记蛋白的分布、细胞核的形状、线粒体的数量——计算机可以从细胞图像中挖掘出识别细胞类型和疾病