-
湖畔实验室AI加速棉花品种改良:解析近3亿DNA甲基化数据,找到43个关键基因
棉花产量与纤维品质如何受到DNA甲基化调控? 在AI的帮助下,中国棉花育种专家成功破译这一“密码本”,并从中找出有望改良棉花品种的关键基因位点。 近日,由浙江大学棉花精准育种团队、中国农科院生物技术所和湖畔实验室(阿里巴巴达摩院)智慧育种团队组成的联合科研团队,综合运用遗传学、生物大数据和AI技术,构建了涵盖207个品种的棉花全基因组DNA甲基化图谱,鉴定2.87亿个单甲基化多态性(SMP)位点,…- 2
- 0
-
机器学习辅助催化剂设计,天大团队开发通用且可解释的描述符
编辑 | KX低成本、高效的催化剂高通量筛选对于未来的可再生能源技术至关重要。可解释的机器学习通过提取物理意义来加速催化剂设计,但面临着巨大的挑战。近日,天津大学巩金龙教授、赵志坚教授、张鹏教授团队开发了一种通用且可解释的描述符模型 ARSC,用于统一多种电催化反应的活性和选择性预测。该模型仅利用易于获取的内在属性,成功地解耦了双原子位点的原子属性(A)、反应物(R)、协同(S)和配位效应(C)。…- 10
- 0
-
Nature子刊,川大团队机器学习结合MD,预测蛋白质变构,助力药物研发
编辑 | 萝卜皮变构药物为现代药物设计提供了一条新途径。然而,识别隐蔽的变构位点是一项艰巨的挑战。四川大学蒲雪梅教授、邵振华研究员团队提出了一种先进的计算流程,结合残基驱动的混合机器学习模型(RHML)和分子动力学(MD)模拟,成功识别出了变构位点、变构调节剂,并揭示了它们的调控机制。具体而言,在 β2 肾上腺素能受体(β2AR)中,团队发现了位于残基 D79^2.50、F282^6.44、N31…- 13
- 0
-
提速1400倍,准确标注酶活性位点,浙大、澳门理工多模态深度学习方法,登Nature子刊
编辑 | 萝卜皮注释酶中的活性位点对于药物发现、疾病研究、酶工程和合成生物学等多个领域的发展至关重要。尽管已经开发出许多自动注释算法,但速度和准确性之间的重大权衡限制了它们的大规模实际应用。浙江大学、澳门理工大学等机构的联合研究团队引入了 EasIFA,一种酶活性位点注释算法,它融合了来自蛋白质语言模型和 3D 结构编码器的潜在酶表示,然后使用多模态交叉注意框架将蛋白质水平信息与酶促反应知识对齐。…- 24
- 0
-
比传统格式高30倍,中国科学院团队Transformer深度学习模型展望糖-卵白质作用位点
编辑 | 萝卜皮糖类是自然界中最丰富的有机物质,对生命至关重要。了解糖类如何在生理和病理过程中调节卵白质,可以为解决关键的生物学问题和开发新的治疗格式提供机遇。然而,糖类份子的多样性和复杂性,对实验鉴别糖-卵白质连系以及相互作用的位点提出了挑战。在这里,中国科学院团队开发了一种深度学习模型 DeepGlycanSite,它能够准确展望给定卵白质构造上的糖连系位点。DeepGlycanSite 将卵…- 4
- 0
❯
个人中心
今日签到
搜索
扫码打开当前页
返回顶部
幸运之星正在降临...
点击领取今天的签到奖励!
恭喜!您今天获得了{{mission.data.mission.credit}}积分
我的优惠劵
-
¥优惠劵使用时效:无法使用使用时效:
之前
使用时效:永久有效优惠劵ID:×
没有优惠劵可用!