图像分割

TMI2024 | 阿大、同济等提出TraCoCo,用于3D医学图像半监督分割

编辑 | ScienceAI3D 医学图像分割方法已经取得了成功,但它们对大量体素级标注数据的依赖是一个需要解决的缺点,因为获取这些标注的成本很高。 半监督学习(SSL)通过使用大量未标注数据和少量标注数据进行模型训练,解决了这一问题。 最成功的 SSL 方法基于一致性学习,即通过最小化从扰动视图中获得的模型响应之间的距离来实现的。

开源3D医学大模型SAT,支持497类器官,性能超越72个nnU-Nets,上交大团队发布

作者 | 上海交通大学、上海人工智能实验室编辑 | ScienceAI近日,上海交通大学与上海人工智能实验室联合团队发布3D医学图像分割大模型SAT(Segment Anything in radiology scans, driven by Text prompts),在3D医学图像(CT、MR、PET)上,基于文本提示实现对人体497种器官/病灶的通用分割。所有数据和代码、模型均已开源。论文链接:::、手术规划和疾病监测等一系列临床任务中都有重要作用。然而,传统的研究针对每个特定的分割任务训练「专用」模型,导致
  • 1