突变
成功率达100%,上交团队提出AI辅助的酶热稳定性工程策略,设计热稳定性的组合突变体
编辑 | ScienceAI优化酶的热稳定性对于蛋白质科学和工业应用至关重要。 目前,通过(半)理性设计和随机诱变方法可以较为准确地设计多个增强酶热稳定性的单点突变。 但当组合多个突变时,常常会出现复杂的上位效应,导致组合突变体完全失活。
精准预测RNA可变剪接,浙大多模态深度学习模型SpTransformer登Nature子刊
组织特异性可变剪接分析算法 SpTransformer 的概念图。 (来源:浙大)作者 | 浙江大学良渚实验室沈宁/刘志红课题组编辑 | ScienceAIRNA 可变剪接(Alternative splicing)是基因转录后一种重要的调控机制,也是生物体多样性和蛋白质多功能性的重要来源之一。 人类约 90% 以上的基因存在可变剪接,不同组织与细胞类型中可变剪接的多元性促进了细胞表型的多样性。
加速蛋白质工程,微软开发蛋白突变效应预测AI框架µFormer
编辑 | KX蛋白质工程是合成生物学领域的重要研究方向之一。近年来,AI 辅助的蛋白质工程逐渐发展成为一种高效的蛋白质分子设计新策略。近日,微软研究院科学智能中心的研究人员提出了深度学习框架 µFormer,其将预训练的蛋白质语言模型与定制设计的评分模块相结合,从而预测蛋白质的突变效应。µFormer 在预测高阶突变体、建模上位(epistatic)相互作用和处理插入方面,实现了最先进的性能。通过将 µFormer 与强化学习框架相结合,可以高效探索广阔的突变空间,涵盖数万亿个突变候选物,来设计活性增强的蛋白质变体
上交大洪亮课题组&上海AI实验室团队发布FSFP,基于语言模型的蛋白质功能小样本预测方法,登Nature子刊
编辑 | ScienceAI近日,上海交通大学自然科学研究院/物理天文学院/张江高研院/药学院洪亮教授课题组,联合上海人工智能实验室青年研究员谈攀,在蛋白质突变-性质预测上取得重要突破。该工作采用全新的训练策略,在使用极少湿实验数据的情况下,极大地提高了传统蛋白质预训练大模型在突变-性质预测的效果。该研究成果以《Enhancing the efficiency of protein language models with minimal wet-lab data through few-shot learning
用基于结构的突变偏好进行蛋白质设计,加州大学、MIT、哈佛医学院团队开发了一种无监督方法
编辑 | 萝卜皮当前最新的蛋白质设计方法,往往依赖于具有多达数百个数百万个参数的大型神经网络,同时并不清楚哪些残基依赖性对于确定蛋白质功能至关重要。加州大学(University of California)、麻省理工学院(Massachusetts Institute of Technology)以及哈佛医学院(Harvard Medical School)的研究人员表明:在不考虑突变相互作用的情况下,单个残基的氨基酸偏好,可以解释 8 个数据集中的大部分甚至有时几乎所有的组合突变效应 (R^2 ~ 78-98%
- 1