TSDiff

优于3D模型,成功率达90.6%,基于扩散的生成式AI从2D分子图探索过渡态

TSDiff 预测分布的概念说明。(来源:论文)编辑 | X过渡态(TS)探索对于阐明化学反应机制和动力学建模至关重要。最近,机器学习模型在 TS 几何形状(geometries)预测方面表现出了卓越的性能。然而,它们通常需要反应物和产物的 3D 构象,并以其适当的方向作为输入,这需要大量的努力和计算成本。近日,韩国科学技术院(KAIST)的研究人员提出了一种基于随机扩散方法的生成方法,即 TSDiff,用于仅从 2D 分子图预测 TS 几何形状。TSDiff 在准确性和效率方面均优于现有的具有 3D 几何形状的
  • 1