TF-IDF
【RAG】RAG范式演进及Agentic-RAG总结综述
RAG的核心思想是通过实时数据检索弥补这一缺陷——在生成答案前,系统先从外部数据源(如数据库、API或互联网)动态检索相关上下文,再结合LLM的知识生成更精准、实时的响应。 但它们通常在处理动态、多步推理任务、适应性和复杂工作流的协调方面仍然存在不足。 rag三大组件检索器(Retriever):从外部数据源(如向量数据库、知识图谱或网页)中搜索与查询相关的信息。
2/6/2025 1:50:06 PM
余俊晖
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
大模型
Midjourney
智能
模型
用户
学习
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
英伟达
GPU
AI for Science
机器学习
场景
预测
华为
伟达
Transformer
Anthropic
模态
深度学习
百度
驾驶
AI视频
文本
苹果
搜索
神器推荐
算力
LLaMA
Copilot
安全
科技
xAI
视频生成
应用
字节跳动
干货合集
人形机器人
2024
具身智能
特斯拉
视觉
亚马逊
语音
大语言模型
AGI
Claude
AI应用场景