碳纳米材料
助力碳纳米材料研究,上海交大团队开发数据驱动的主动学习框架
编辑 | X碳纳米材料的可控合成,比如单晶、大面积石墨烯,手性碳纳米管,是实现其在未来电子或能源设备中潜在应用的关键挑战。基底催化生长为碳纳米结构的可控合成提供了一种非常有前途的方法。然而,动态催化表面的生长机制和更通用的设计策略的发展仍然是一个挑战。近日,来自上海交通大学和日本东北大学(Tohoku University)的研究团队,展示了主动机器学习模型如何有效地揭示基底(Substrate)催化生长中涉及的微观过程。研究利用分子动力学和蒙特卡罗方法的协同方法,并通过高斯近似势增强,对 Cu(111) 上的石墨
1/15/2024 3:22:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
AIGC
OpenAI
AI绘画
ChatGPT
机器人
数据
谷歌
智能
Midjourney
大模型
学习
GPT
DeepSeek
用户
AI创作
微软
图像
AI
开源
Meta
技术
论文
Stable Diffusion
算法
生成式
蛋白质
马斯克
芯片
Gemini
计算
神经网络
代码
AI设计
Sora
研究
腾讯
3D
开发者
GPU
场景
伟达
英伟达
预测
机器学习
华为
模态
Transformer
模型
文本
驾驶
神器推荐
深度学习
AI视频
AI for Science
苹果
搜索
干货合集
LLaMA
视频生成
算力
百度
2024
Copilot
科技
应用
Anthropic
特斯拉
AI应用场景
安全
具身智能
写作
机器
字节跳动
AGI
视觉
架构
语音
DeepMind
API