碳纳米材料

助力碳纳米材料研究,上海交大团队开发数据驱动的主动学习框架

编辑 | X碳纳米材料的可控合成,比如单晶、大面积石墨烯,手性碳纳米管,是实现其在未来电子或能源设备中潜在应用的关键挑战。基底催化生长为碳纳米结构的可控合成提供了一种非常有前途的方法。然而,动态催化表面的生长机制和更通用的设计策略的发展仍然是一个挑战。近日,来自上海交通大学和日本东北大学(Tohoku University)的研究团队,展示了主动机器学习模型如何有效地揭示基底(Substrate)催化生长中涉及的微观过程。研究利用分子动力学和蒙特卡罗方法的协同方法,并通过高斯近似势增强,对 Cu(111) 上的石墨
  • 1