碳纳米材料
助力碳纳米材料研究,上海交大团队开发数据驱动的主动学习框架
编辑 | X碳纳米材料的可控合成,比如单晶、大面积石墨烯,手性碳纳米管,是实现其在未来电子或能源设备中潜在应用的关键挑战。基底催化生长为碳纳米结构的可控合成提供了一种非常有前途的方法。然而,动态催化表面的生长机制和更通用的设计策略的发展仍然是一个挑战。近日,来自上海交通大学和日本东北大学(Tohoku University)的研究团队,展示了主动机器学习模型如何有效地揭示基底(Substrate)催化生长中涉及的微观过程。研究利用分子动力学和蒙特卡罗方法的协同方法,并通过高斯近似势增强,对 Cu(111) 上的石墨
1/15/2024 3:22:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
苹果
人形机器人
深度学习
AI视频
模态
字节跳动
xAI
驾驶
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型