Sytem 2 Attention

Meta对Transformer架构下手了:新注意力机制更懂推理

作者表示,这种全新注意力机制(Sytem 2 Attention)或许你也需要呢。大型语言模型(LLM)很强已经是一个不争的事实,但它们有时仍然容易犯一些简单的错误,表现出较弱的推理能力。举个例子,LLM 可能会因不相关的上下文或者输入提示中固有的偏好或意见做出错误的判断。后一种情况表现出的问题被叫做「阿谀奉承」,即模型与输入保持一致。有没有方法来缓解这类问题呢?有些学者试图通过添加更多监督训练数据或通过强化学习策略来解决,但这些无法从根本上解决问题。近日 Meta 研究者在论文《System 2 Attentio
  • 1