AI在线 AI在线

SWEET-RL

SWEET-RL:基于训练时信息的多轮LLM代理强化学习框架

SWEET-RL(Step-WisE Evaluation from Training-time information,基于训练时信息的逐步评估)是多轮大型语言模型(LLM)代理强化学习领域的重要技术进展。 该算法相较于现有最先进的方法,成功率提升了6%,使Llama-3.1-8B等小型开源模型能够达到甚至超越GPT-4O等大型专有模型的性能水平。 本文将深入分析SWEET-RL如何改进AI代理在复杂协作任务中的训练方法。
3/28/2025 10:16:15 AM
Jenray

田渊栋和Sergey Levine参与开发新型RL算法,能通过多轮训练让智能体学会协作推理

现实世界中,很多任务很复杂,需要执行一系列的决策。 而要让智能体在这些任务上实现最佳性能,通常需要直接在多轮相关目标(比如成功率)上执行优化。 不过,相比于模仿每一轮中最可能的动作,这种方法的难度要大得多。
3/23/2025 3:45:00 PM
机器之心
  • 1