SMILES

化学逆合成SOTA!上海交大团队提出SMILES对齐技术实现高效逆合成预测

编辑 | ScienceAI逆合成规划在药物研发中扮演着至关重要的角色,而单步逆合成预测更是这一过程的核心。通过运用Transformer等先进的序列模型,将单步逆合成预测问题转化为从产物SMILES表示到反应物SMILES表示的翻译任务,已经成为一种广泛采用且效果显著的策略。然而,这种方法往往忽略了一个关键点:在反应物和产物之间,存在大量可以被直接利用的相同子结构。对这些子结构利用的不充分限制了模型预测的效率和准确性。2024年7月,上海交通大学人工智能研究院金耀辉、许岩岩研究团队在《Journal of Che

分子100%有效,从头设计配体,湖南大学提出基于片段的分子表征框架

编辑 | KX分子描述符广泛应用于分子建模,但在 AI 辅助分子发现领域,缺乏自然适用、完整且「原始」的分子表征是一个挑战,影响 AI 模型的性能和可解释性。在使用先进的自然语言处理(NLP)方法解决化学问题时,会出现两个基本问题:(1)什么是「化学词」?(2)如何将它们编码为「化学句子」?近日,湖南大学研究团队提出了一种灵活的、基于片段的多尺度分子表征框架 t-SMILES 的框架来解决第二个问题。该框架使用 SMILES 类型的字符串描述分子,并且可以将基于序列的模型作为主要生成模型。t-SMILES 具有三种

优于SOTA方法,语言模型结合几何深度学习技术,望石智慧开发3D分子生成模型Lingo3DMol

编辑 | X分子生成是 AI 助力小分子新药研发的核心技术。望石智慧始终专注于分子生成技术的开发。就在前几天,望石智慧的研究团队推出了 Lingo3DMol,用于在给定口袋 3D 结构的情况下生成小分子配体的 3D 结构。方法结合了语言模型和几何深度学习技术。研究人员在传统的 SMILES 分子表征的基础上,开发了新的分子表示方法  FSMILES。此外,研究训练了一个单独的非共价相互作用预测器,为生成模型提供必要的结合模式信息。Lingo3DMol 可以有效地穿越类似药物的化学空间,防止异常结构的形成。Lingo
  • 1