数据分布
NeurIPS | 对比采样链:让扩散模型更快、更准、更清晰的秘密武器
论文 Contrastive Sampling Chains in Diffusion Models 的精炼解读。 一眼概览该论文提出了一种 对比采样链(Contrastive Sampling Chains, CSC) 方法,通过对比损失和得分匹配相结合,优化扩散模型(DMs)的采样过程,从而 减少离散化误差,提高生成图像的质量,同时提升采样速度。 核心问题扩散模型在使用数值求解方法进行采样时 不可避免地引入离散化误差,导致生成样本与真实数据分布之间存在偏差。
让模型预见分布漂移:动态系统颠覆性设计引领时域泛化新革命
在实际应用中,数据集的数据分布往往随着时间而不断变化,预测模型需要持续更新以保持准确性。 时域泛化旨在预测未来数据分布,从而提前更新模型,使模型与数据同步变化。 然而,传统方法假设领域数据在固定时间间隔内收集,忽视了现实任务中数据集采集的随机性和不定时性,无法应对数据分布在连续时间上的变化。
- 1