生成式零样本学习
提升生成式零样本学习能力,视觉增强动态语义原型方法入选CVPR 2024
虽然我从来没见过你,但是我有可能「认识」你 —— 这是人们希望人工智能在「一眼初见」下达到的状态。为了达到这个目的,在传统的图像识别任务中,人们在带有不同类别标签的大量图像样本上训练算法模型,让模型获得对这些图像的识别能力。而在零样本学习(ZSL)任务中,人们希望模型能够举一反三,识别在训练阶段没有见过图像样本的类别。生成式零样本学习(GZSL)是实现零样本学习的一种有效方法。在生成式零样本学习中,首先需要训练一个生成器来合成未见类的视觉特征,这个生成过程是以前面提到的属性标签等语义描述为条件驱动的。有了生成的视觉
3/15/2024 2:59:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
人形机器人
苹果
深度学习
AI视频
模态
字节跳动
xAI
驾驶
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
大型语言模型
训练