闪存
复旦团队国际首次验证超快闪存集成工艺:20 纳秒超快编程、10 年非易失
感谢据复旦大学官方今日消息,人工智能的飞速发展迫切需要高速非易失存储技术。当前主流非易失闪存的编程速度在百微秒级,无法支撑应用需求。复旦大学周鹏-刘春森团队前期研究表明二维半导体结构能够将速度提升一千倍以上,实现颠覆性的纳秒级超快存储闪存。然而,如何实现规模集成、走向实际应用极具挑战。从界面工程出发,复旦大学团队在国际上首次验证了 1Kb 超快闪存阵列集成验证,并证明了超快特性可延伸至亚 10 纳米尺度。北京时间 8 月 12 日下午 5 点,相关成果以《二维超快闪存的规模集成工艺》(“A scalable int
8/13/2024 12:55:11 PM
汪淼
CPU推理提升4到5倍,苹果用闪存加速大模型推理,Siri 2.0要来了?
苹果这项新工作将为未来 iPhone 加入大模型的能力带来无限想象力。近年来,GPT-3、OPT 和 PaLM 等大型语言模型(LLM)在广泛的 NLP 任务中表现出了强大的性能。不过,这些能力伴随着大量计算和内存推理需求,毕竟大型语言模型可能包含数千亿甚至万亿参数,使得高效加载和运行变得有挑战性,尤其是在资源有限的设备上。当前标准的应对方案是将整个模型加载到 DRAM 中进行推理,然而这种做法严重限制了可以运行的最大模型尺寸。举个例子,70 亿参数的模型需要 14GB 以上的内存才能加载半精度浮点格式的参数,这超
12/25/2023 2:40:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
苹果
深度学习
AI视频
模态
人形机器人
xAI
驾驶
字节跳动
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型