scSemiProfiler

更高分辨率,更经济,深度生成模型与主动学习策略结合,推进大规模单细胞研究

编辑 | 萝卜皮单细胞测序是分析复杂疾病细胞复杂性的重要工具。然而,其高昂的成本阻碍了其在广泛的生物医学研究中的应用。传统的细胞反卷积方法可以从更便宜的批量测序数据中推断出细胞类型比例,但它们无法提供单细胞水平分析所需的精细分辨率。为了克服这一挑战,加拿大麦吉尔大学(McGill University)的研究人员引入了「scSemiProfiler」,这是一个创新的计算框架,将深度生成模型与主动学习策略结合在一起。该方法具有高度精确性,能推断出大群体中的单细胞概况。可与真实的单细胞分析数据紧密结合,支持精细的细胞分
  • 1