scDisInFact
更全面、更准确的方法,佐治亚理工学院团队用DL对scRNA-seq数据进行批次效应和条件效应建模
编辑 | 萝卜皮单细胞 RNA 测序 (scRNA-seq) 已广泛用于疾病研究,其中在不同条件下(包括人口群体、疾病阶段和药物治疗)从捐赠者中收集样本批次。值得注意的是,此类研究中样本批次之间的差异是批次效应引起的技术混杂因素和条件效应引起的生物变异的混合体。但是,当前的去除批次效应方法往往同时消除技术批次效应和有意义的条件效应,而扰动预测方法仅关注条件效应,导致由于未考虑批次效应而导致基因表达预测不准确。在最新的研究中,佐治亚理工学院(Georgia Institute of Technology,GT)的研究
3/11/2024 6:22:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
大模型
Midjourney
智能
模型
用户
学习
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
英伟达
GPU
AI for Science
机器学习
场景
预测
华为
伟达
Transformer
Anthropic
模态
百度
深度学习
驾驶
AI视频
文本
苹果
搜索
神器推荐
算力
LLaMA
Copilot
安全
科技
xAI
视频生成
应用
字节跳动
干货合集
人形机器人
2024
具身智能
特斯拉
视觉
亚马逊
语音
大语言模型
AGI
Claude
AI应用场景