Scaling Laws
大模型量化训练极限在哪?腾讯混元提出低比特浮点数训练Scaling Laws
AIxiv专栏是AI在线发布学术、技术内容的栏目。 过去数年,AI在线AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。 如果您有优秀的工作想要分享,欢迎投稿或者联系报道。
Llama架构比不上GPT2?神奇token提升10倍记忆?
一个 7B 规模的语言模型 LLM 能存储多少人类知识?如何量化这一数值?训练时间、模型架构的不同将如何影响这一数值?浮点数压缩 quantization、混合专家模型 MoE、以及数据质量的差异 (百科知识 vs 网络垃圾) 又将对 LLM 的知识容量产生何种影响?近日,朱泽园 (Meta AI) 和李远志 (MBZUAI) 的最新研究《语言模型物理学 Part 3.3:知识的 Scaling Laws》用海量实验(50,000 条任务,总计 4,200,000 GPU 小时)总结了 12 条定律,为 LLM 在
- 1