AI在线 AI在线

RAG

2025年企业对AI的期望

AI驱动的变革即将到来,但2025年将是缓慢而稳步进展的一年。 今年,随着更现实的期望占据主导,围绕AI的初步炒作和兴奋已经平息。 对于企业部署而言,这一点尤其明显,因为现有模型的能力与许多业务工作流的复杂性相结合,导致进展比许多人预期的要慢。
12/10/2024 3:10:26 PM
Martin

自己动手实现一个RAG应用

我们知道 RAG 有两个核心的过程,一个是把信息存放起来的索引过程,一个是利用找到相关信息生成内容的检索生成过程。 所以,我们这个 RAG 应用也要分成两个部分:索引和检索生成。 RAG 是为了让大模型知道更多的东西,所以,接下来要实现的 RAG 应用,用来增强的信息就是我们这门课程的内容,我会把开篇词做成一个文件,这样,我们就可以和大模型讨论我们的课程了。
12/6/2024 9:58:09 AM
greencoatman

RAG:让大模型知道更多东西

虽然我们说大模型的特点之一是知识丰富,但这里的知识仅限于通用的知识,也就是网上能够很容易找到的知识。 对于一些特定的知识,比如你所在业务领域的知识,它就一无所知了。 个中缘由,不言而喻,大模型训练时,根本不可能拿到你们公司的数据。
12/4/2024 10:35:21 AM
greencoatman

Elasticsearch虽好,但矢量数据库才是未来

作者 | Jiang Chen译者 | 布加迪审校 | 重楼出品 | 51CTO技术栈(微信号:blog51cto)几十年来,以Elasticsearch为代表的关键词匹配(又称为全文搜索)一直是企业搜索和推荐引擎等信息检索系统的默认选择。 随着基于人工智能的搜索技术不断进步,如今企业组织在向语义搜索转变,从而使系统能够理解用户查询背后的含义和意图。 嵌入模型和矢量数据库已成为这一转变的核心。
12/2/2024 12:46:03 PM
布加迪

【RAG】浅看引入智能信息助理提升大模型处理复杂推理任务的潜力-AssisTRAG

AssisTRAG通过集成一个智能信息助手来提升LLMs处理复杂推理任务的能力。 该框架由两个主要组件构成:一个冻结的主语言模型和一个可训练的助手语言模型。 AssisTRAG与之前的RAG对比1.
11/26/2024 8:50:20 AM
余俊晖

没有思考过 Embedding,谈何 RAG,更不足以谈 AI大模型

今天,我们来聊聊 AI 大模型,有一个非常重要概念 "Embedding"。 你可能听说过它,也可能对它一知半解。 如果你没有深入了解过 Embedding,那你就无法真正掌握 RAG 技术,更不能掌握 AI 大模型精髓所在。
11/21/2024 3:44:21 PM
渔夫

LLM-R:基于RAG和层次化Agent落地案例解析

在这个由智能设备主导的时代,维护工作的重要性愈发凸显,几乎成了生产活动的守护神。 想象一下,当一台精密的机器在深夜突发故障,而维护手册却像天书一样难以理解,这时,交互式电子技术手册(IETMs)就像一束温暖的灯塔,指引着维护人员安全渡过难关。 面对从图形用户界面(GUIs)到自然语言用户界面(LUIs)的转变,以及复杂逻辑关系的梳理,传统的IETMs显得有些力不从心。
11/14/2024 6:39:23 PM
哎呀AIYA

大模型应用系列:从Ranking到Reranking

每个搜索引擎背后都隐藏着一个至关重要却往往被忽视的组成部分——Reranking(重新排名)。 那么,什么是Rerank呢? 简而言之,这一过程旨在优化并调整搜索结果的顺序,使之更加精准地匹配用户的查询需求。
11/11/2024 5:16:44 PM
曹洪伟

RAG技术落地的两个问题及应对策略

什么是RAG? RAG的全称是检索增强生成(Retrieval-Augmented Generation,简称RAG),它结合了检索和和生成技术,通过整合检索系统和生成模型的优势,来提升模型生成文本的质量和上下文相关性。 这种技术主要是为了解决生成式模型在面对需要具体、实时或领域专业知识时可能产生的准确性不足和上下文不敏感的问题。
11/11/2024 2:23:11 PM
fxcc

RAG新突破:块状注意力机制实现超低延迟检索增强

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]
11/3/2024 1:31:00 PM
机器之心

谷歌推出 DataGemma:基于可信数据源提高 AI 准确度,减少幻觉

科技媒体 maginative 昨日(9 月 12 日)发布博文,报道谷歌公司基于谷歌数据共享(Data Commons)中的真实世界统计数据,推出了开放权重 Gemma 模型的新版本  DataGemma。语言模型当前面临的一大难题就是幻觉(Hallucinations),尤其是大语言模型(LLMs)在处理数值或统计数据时,这一问题变得尤为棘手,因此精确性至关重要。谷歌的 Data Commons 是一个存储库,汇集了来自联合国和疾病控制与预防中心等可信组织收集的超过 2400 亿个数据点。通过利用这一庞大的统计
9/13/2024 7:11:53 AM
故渊

延迟交互模型,为什么是下一代RAG的标配?

AIxiv专栏是AI在线发布学术、技术内容的栏目。过去数年,AI在线AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]张颖峰:英飞流联合创始人,多年搜索、AI、Infra基础设施开发经历,目前正致力于下一代 RAG 核心产品建设。在 RAG 系统开发中,良好的 Reranker 模型处于必不可少的环节,也
8/5/2024 2:20:00 PM
机器之心

六位一线 AI 工程师分享自身总结,公开大模型应用摸爬滚打一年心得

六位一线 AI 工程师和创业者,把在大模型应用开发上摸爬滚打一整年的心得,全!分!享!了!(奇怪的六一儿童节大礼包出现了)这篇干货长文,一时间成为开发者社区热议的话题。有网友评价为,大模型领域少有的“有操作性”的实用见解,非常值得一读。这 6 位作者来自不同背景,比如有大厂工程师,也有独立开发者,还有咨询顾问。但他们的共同之处,是过去一年里一直在大模型之上构建真实应用程序,而不只是炫酷的 Demo 演示,他们认为:现在正是非机器学习工程师或科学家,也能把 AI 构建到产品中的时候。在他们的一系列分享中,网友热议的亮
6/1/2024 6:54:15 PM
清源

狂奔一年后的向量数据库,何去何从?|对话 MyScaleDB

2023 年可以说是大模型元年,借着大模型的东风,向量数据库也迎来了大爆发,被带到了更高的关注度上。一方面,向量数据库和 RAG 得到广泛的关注和认可,是因为他们的确可以解决一些短期内大模型无法攻克的难题,比如模型幻觉问题等。同时,在尝试用向量数据库和 RAG 做场景落地的时候,效果也还不错。不过另一方面,我们也无法回避对他们普遍的困惑与争议,比如向量数据库是否已经凉了,以及如今势头正盛的 RAG 是否会被长文本杀死等等。那此刻距离 ChatGPT 的发布已经有一年多的时间,站在当下的这个时间点上来看,向量数据库和
5/14/2024 4:29:00 PM
机器之心

RAG还是微调?微软出了一份特定领域大模型应用建设流程指南

检索增强生成(RAG)和微调(Fine-tuning)是提升大语言模型性能的两种常用方法,那么到底哪种方法更好?在建设特定领域的应用时哪种更高效?微软的这篇论文供你选择时进行参考。在构建大语言模型应用程序时通常有两种常见的方法来整合专有和特定领域的数据:检索增强生成和微调。检索增强生成通过外部数据增强提示,而微调将额外的知识整合到模型本身中。不过,对这两种方法的优缺点了解的却不够充分。本文中,来自微软的研究者引入一个新的关注点:为需要特定背景和自适应响应的行业(农业)创建 AI 助手。本文提出了一个全面的大语言模型
2/16/2024 5:27:00 PM
机器之心

低成本快速定制大模型,这次我们来深度探讨下RAG 和向量数据库

当今人工智能领域,最受关注的毋庸置疑是大模型。然而,高昂的训练成本、漫长的训练时间等都成为了制约大多数企业入局大模型的关键瓶颈。这种背景下,向量数据库凭借其独特的优势,成为解决低成本快速定制大模型问题的关键所在。向量数据库是一种专门用于存储和处理高维向量数据的技术。它采用高效的索引和查询算法,实现了海量数据的快速检索和分析。如此优秀的性能之外,向量数据库还可以为特定领域和任务提供定制化的解决方案。科技巨头诸如腾讯、阿里等公司纷纷布局向量数据库研发,力求在大模型领域实现突破。大量中小型公司也借助向量数据库的能力快速进
11/13/2023 12:05:00 PM
机器之心