Query

机器学习 | 从0开发大模型—译llama3-from-scratch

最近在看一篇Github上大佬的文章,从0开始训练llama3,觉得对于《从0开发大模型》有点帮助,于是翻译一下,发现其中很多内容当前系列文章的知识点相似。 原文::、Tokenizer原始代码没有实现tokenizer,而是使用llama3的 tokenizer.model,实现代码如下:这里用了字节对编码(BPE),和我们训练的tokenzier使用的方式一样。 2、读取模型文件将模型文件下载到 Meta-Llama-3-8B 文件夹中,然后读取模型文件,代码如下:其中输出的配置看:n_layers=32:表示该模型有32个Transformer层n_heads=32:表示每个Transformer层有32个注意力头vobac_size=128256:表示词汇表大小为1282563、文本转换为token使用 tiktoken(openai的库)作为 tokenizer,实现如下:llama3-scratch其中,128000是 |begin_of_text| 的token,还包括如下特殊token:4、将token转换为embedding将上面的 token 通过 embedding 层,[17X1] 转换为 [17X4096],即 17 个 embeding(每个token一个),长度为 4096。

ASQuery:基于Query的时序动作分割新架构

1. 前言北京邮电大学与EVOL创新团队和ACG工业算法组针对时序动作分割任务共同提出了基于query新架构的模型ASQuery。ASQuery包含了动作及边界两种query,利用动作query将原先的帧维度分类过程转化为query与视频帧的相似度计算过程,提高了分类精度;利用边界query预测动作的边界,进一步平滑了原先的预测结果,大大缓解了过分割现象。论文ASQuery: A Query-based Model for Action Segmentation 已被ICME2024接收。论文地址:。2. 背景和动

揭秘Hologres如何支持超高QPS在线服务(点查)场景

Hologres(中文名交互式分析)是阿里云自研的一站式实时数仓,这个云原生系统融合了实时服务和分析大数据的场景,全面兼容PostgreSQL协议并与大数据生态无缝打通,能用同一套数据架构同时支持实时写入实时查询以及实时离线联邦分析。它的出现简化了业务的架构,为业务提供实时决策的能力,让大数据发挥出更大的商业价值。本期将为大家揭秘Hologres如何支持超高QPS点查。传统的 OLAP 系统在业务中往往扮演着比较静态的角色,以通过分析海量的数据得到业务的洞察(比如说预计算好的视图、模型等),从这些海量数据分析到的结
  • 1