全光
超快、超低能耗!北大团队提出基于卷积神经网络的全光计算
编辑/凯霞随着先进工程计算、经济数据分析和云计算的快速发展,对超高速和高能效计算的需求呈指数级增长。现有的冯诺依曼架构下的传统电子信号处理器难以同时实现高速和低能耗。使用光子作为信息载体是一种很有前景的选择。由于传统材料的三阶非线性光学较弱,在传统冯诺依曼架构下构建集成光子计算芯片一直是一个挑战。近日,由北京大学物理学院龚旗煌研究团队提出了一种基于卷积神经网络(CNN)实现超快超低能耗全光计算芯片方案的新策略,支持多计算任务的执行。这项工作为下一代全光计算系统指明了方向。该研究以「All-optical compu
12/15/2021 1:36:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
苹果
深度学习
AI视频
模态
人形机器人
xAI
驾驶
字节跳动
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型