Prompt2Model

1句指令+5美元+20分钟,就能训练出小型专业模型,Prompt2Model了解一下

大规模语言模型(LLM)使用户可以借助提示和上下文学习来构建强大的自然语言处理系统。然而,从另一角度来看,LLM 在特定自然语言处理任务上表现存在一定退步:这些模型的部署需要大量计算资源,并且通过 API 与模型进行交互可能引发潜在的隐私问题。为了应对这些问题,来自卡内基梅隆大学(CMU)和清华大学的研究人员,共同推出了 Prompt2Model 框架。该框架的目标是将基于 LLM 的数据生成和检索方法相结合,以克服上述挑战。使用 Prompt2Model 框架,用户只需提供与 LLM 相同的提示,即可自动收集数据
  • 1