Poseidon

偏微分方程有了基础模型:样本需求数量级减少,14项任务表现最佳

本文提出的 Poseidon 在样本效率和准确率方面都表现出色。偏微分方程(PDEs)被称为物理学的语言,因为它们可以在广泛的时间 - 空间尺度上对各种各样的物理现象进行数学建模。常用的有限差分、有限元等数值方法通常用于近似或模拟偏微分方程。然而,这些方法计算成本高昂,特别是对于多查询问题更是如此,因而人们设计了各种数据驱动的机器学习(ML)方法来模拟偏微分方程。其中,算子学习( operator learning)算法近年来受到越来越多的关注。然而,现有的算子学习方法样本效率并不高,因为它们需要大量的训练样例才能
  • 1