配体
「定制化」结合蛋白质,几何深度学习方法加速开发精准药物,登Nature
编辑 | 萝卜皮蛋白质是生命的基础,具有多样的生物功能,如输送氧气、传递化学信号和防御病原体。 其分子表面的特异性决定了其功能,这一特性被用于药物开发,通过设计分子与特定蛋白质结合来改变其结合方式,甚至开发「分子胶」来治疗疾病。 奥地利科学院(ÖAW)的 Michael Bronstein、瑞士洛桑联邦理工学(EPFL)的 Bruno Correia 等,率先使用了一种名为「MaSIF(molecular surface interaction fingerprinting)」的几何深度学习架构,用于设计具有所需分子表面特性的新蛋白质。
Nature子刊,准确率达96%,AI从序列中预测蛋白-配体互作
编辑 | 萝卜皮在药物研发中,确定小分子配体对蛋白质的结合亲和力和功能效应至关重要。目前的计算方法可以预测这些蛋白质-配体相互作用特性,但如果没有高分辨率的蛋白质结构,通常会失去准确性,并且无法预测功能效应。莫纳什大学(Monash University)和格里菲斯大学(Griffith University)的研究人员开发了 PSICHIC(PhySIcoCHemICal graph neural network),这是一个结合物理化学约束的框架,可直接从序列数据解码相互作用指纹(fingerprints)。这使
登Nature子刊,拓扑Transformer模型进行多尺度蛋白质-配体互作预测,助力药物研发
编辑 | 萝卜皮一项新的人工智能应用将帮助研究人员提高药物研发能力。该项目名为 TopoFormer,是由美国密歇根州立大学(Michigan State University)数学系 Guowei Wei 教授领导的跨学科团队开发的。TopoFormer 将分子的三维信息转化为典型的基于人工智能的药物相互作用模型可以使用的数据,扩展了这些模型预测药物有效性的能力。「有了人工智能,你可以让药物研发更快、更高效、更便宜。」Wei 说,他同时在生物化学和分子生物学系以及电气和计算机工程系任职。Wei 教授解释道,在美国
准确率达0.96,从序列中预测蛋白-配体互作的物理化学约束图神经网络
编辑 | 萝卜皮在药物研发中,确定小分子配体对蛋白质的结合亲和力和功能效应至关重要。目前的计算方法可以预测这些蛋白质-配体相互作用特性,但如果没有高分辨率的蛋白质结构,通常会失去准确性,并且无法预测功能效应。莫纳什大学(Monash University)和格里菲斯大学(Griffith University)的研究人员开发了 PSICHIC(PhySIcoCHemICal graph neural network),这是一个结合物理化学约束的框架,可直接从序列数据解码相互作用指纹(fingerprints)。这使
成功率超越RoseTTAFold系列,用序列信息直接预测蛋白质-配体复合物结构
编辑 | 萝卜皮蛋白质-配体对接是药物发现和开发中一种成熟的工具,用于缩小实验测试的潜在治疗范围。然而,高质量的蛋白质结构是必需的,而且蛋白质通常被视为完全或部分刚性的。在这里,柏林自由大学(Freie Universität Berlin)的研究人员开发了一个人工智能系统,可以直接从序列信息预测蛋白质-配体复合物的完全柔性全原子结构。虽然经典对接方法仍然更胜一筹,但这也取决于目标蛋白质的晶体结构。除了预测灵活的全原子结构外,预测置信度指标 (plDDT) 还可用于选择准确的预测,以及区分强结合剂和弱结合剂。该研究
「AI+物理先验知识」,浙大、中国科学院通用蛋白质-配体相互作用评分方法登Nature子刊
编辑 | X蛋白质就像是身体中的精密锁具,而药物分子则是钥匙,只有完美契合的钥匙才能解锁治疗之门。科学家们一直在寻找高效的方法来预测这些「钥匙」和「锁」之间的匹配度,即蛋白质-配体相互作用。然而,传统的数据驱动方法往往容易陷入「死记硬背」,记住配体和蛋白质训练数据,而不是真正学习它们之间的相互作用。近日,浙江大学和中国科学院研究团队,提出了一种名为 EquiScore 的新型评分方法,利用异构图神经网络整合物理先验知识,并在等变几何空间中表征蛋白质-配体相互作用。EquiScore 基于一个新数据集进行训练,该数据
结合量子特征、2万个分子动力学模拟,新蛋白-配体复合物ML数据集,登Nature子刊
编辑 | 枯叶蝶大型语言模型极大地增强了科学家理解生物学和化学的能力,但基于结构的药物发现、量子化学和结构生物学的可靠方法仍然很少。大型语言模型迫切需要精确的生物分子-配体相互作用数据集。为了解决这个问题,德国亥姆霍兹慕尼黑研究中心结构生物学所和慕尼黑工业大学的研究人员,提出了 MISATO。这是一个数据集,它结合了小分子的量子力学(QM)特性,还有约 20,000 个实验蛋白质-配体复合物的相关分子动力学(MD)模拟,以及对实验数据的广泛验证。从现有的实验结构出发,研究人员利用半经验量子力学系统地完善了这些结构。
辉瑞 AI 方法登 Science,揭示数以万计的配体-蛋白质相互作用
编辑 | X尽管蛋白质结构预测取得了重大进展。但对于 80% 以上的蛋白质,迄今为止尚未发现小分子配体。识别大多数蛋白质的小分子配体仍具有挑战性。现在,奥地利科学院分子医学研究中心 CeMM 的研究人员与辉瑞公司合作,开发了一种方法来预测数百种小分子与数千种人类蛋白质的结合活性。这项大规模研究揭示了数以万计的配体-蛋白质相互作用,通过探索这些相互作用,从而可以开发化学工具和治疗方法。此外,在机器学习和人工智能的支持下,它可以「公正」地预测小分子如何与活体人类细胞中存在的所有蛋白质相互作用。相关研究以《Large-s
5天完成6个月实验量,加速催化研究,「自动驾驶」催化实验室Fast-Cat登Nature子刊
编辑 | 紫罗「自动驾驶实验室」是未来?今年 1 月底,荷兰阿姆斯特丹大学开发自主化学合成 AI 机器人「RoboChem」。一周内,可以优化大约 10~20 个分子的合成。这需要博士生几个月的时间。还有去年 DeepMind 团队开发的自主实验室 A-Lab,17 天自主合成 41 种新化合物。卡内基梅隆大学的 Coscientist,自主设计、规划和执行复杂的科学实验......现在,来自美国北卡罗来纳州立大学和全球特种材料公司伊士曼化学公司(Eastman Chemical Company)合作,开发了一个「
更高准确性,覆盖蛋白、核酸、复合物等更多分子,DeepMind发布AlphaFold新版本
编辑 | ScienceAI自 2020 年发布以来,AlphaFold 彻底改变了人们对蛋白质及其相互作用的理解方式。Google DeepMind 和 Isomorphic Labs 一直在共同努力,为更强大的 AI 模型奠定基础,将覆盖范围从蛋白质扩展到全方位的生物相关分子。2023 年 10 月 31 日,该研究团队分享了下一代 AlphaFold 的最新进展。其最新的模型现在可以对蛋白质数据库 (PDB) 中的几乎所有分子进行预测,通常达到原子精度。新版模型 AlphaFold-latest (暂称)极大
可预测蛋白质-配体结合亲和力,之江实验室&百度&港科大团队开发基于曲率的自适应图神经网络
编辑 | 萝卜皮准确预测蛋白质和配体之间的结合亲和力对于药物发现至关重要。图神经网络(GNN)的最新进展在学习蛋白质-配体复合物的表示以估计结合亲和力方面取得了重大进展。为了提高 GNN 的性能,经常需要从几何角度研究蛋白质-配体复合物。虽然「现成的」GNN 可以包含分子的一些基本几何结构,例如距离和角度,通过将复合体建模为同亲图,这些解决方案很少考虑更高级别的几何属性,例如曲率和同源性,以及异亲相互作用。为了解决这些限制,之江实验室、百度大数据以及香港科技大学的研究人员引入了基于曲率的自适应图神经网络(CurvA
- 1