NVIDIAH800
百万成本揭秘LLM训练黄金法则,阶跃星辰推出全领域适用的超参数优化工具
在人工智能的激烈竞争中,一场耗资百万美元的大规模实验正悄然改变着大语言模型的训练方式。 阶跃星辰研究团队日前发布重磅研究成果,他们通过耗费近100万NVIDIA H800GPU小时的算力,从零开始训练了3,700个不同规模的模型,累计训练了惊人的100万亿个token,揭示出一条被称为"Step Law"的普适性缩放规律,为大语言模型的高效训练提供了全新指南。 这项研究不仅仅是对超参数优化的探索,更是第一个全面考察模型最优超参在不同形状、稀疏度和数据分布下稳定性的工作。
3/13/2025 3:41:00 PM
AI在线
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
苹果
深度学习
AI视频
模态
人形机器人
xAI
驾驶
字节跳动
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型