Moonlight

月之暗面联手UCLA推新模型Mixture-of-Expert,提升语言模型训练效率

在人工智能领域,训练大型语言模型(LLMs)已成为推动技术进步的重要方向。 然而,随着模型规模和数据集的不断扩大,传统的优化方法 —— 特别是 AdamW—— 逐渐显露出其局限性。 研究人员面临着计算成本高、训练不稳定等一系列挑战,包括梯度消失或爆炸、参数矩阵更新不一致及分布式环境下的资源需求高等问题。
  • 1