MOF

预测准确率达95.7%,ChatMOF利用LLM预测和生成金属有机框架

编辑 | X金属有机框架(MOF)因其孔隙率大、表面积大和出色的可调性而用于许多化学应用。然而,在利用 AI 深入探索 MOF 设计与性能优化的研究征途中,科学家们正面临着前所未有的挑战。去年 3 月,韩国科学技术院(Korea Advanced Institute of Science and Technology,KAIST)的研究人员提出的 MOFTransformer 模型经过一百万个假设的 MOF 的预训练,在预测各种属性方面表现出色。近日,KAIST 团队提出了一种 AI 系统——ChatMOF,用于预

预测精度高达0.98,清华、深势科技等提出基于Transformer的MOF材料多功能预测框架

编辑 | X气体分离对于工业生产和环境保护至关重要,金属有机框架(MOF)由于其独特的性能而成为气体分离领域一种有前途的材料。传统的模拟方法,如分子动力学,复杂且计算量要求高。虽然基于特征工程的机器学习方法表现更好,但由于标记数据有限,很容易出现过度拟合。此外,这些方法通常是针对单一任务而设计的。为了应对这些挑战,由清华大学、加州大学、中山大学、苏州大学、深势科技和北京科学智能研究院(AI for Science Institute,Beijing,AISI) 组成的多机构团队,合作提出了 Uni-MOF,一种用于
  • 1