MoE-Mamba

MoE与Mamba强强联合,将状态空间模型扩展到数百亿参数

性能与 Mamba 一样,但所需训练步骤数却少 2.2 倍。状态空间模型(SSM)是近来一种备受关注的 Transformer 替代技术,其优势是能在长上下文任务上实现线性时间的推理、并行化训练和强大的性能。而基于选择性 SSM 和硬件感知型设计的 Mamba 更是表现出色,成为了基于注意力的 Transformer 架构的一大有力替代架构。近期也有一些研究者在探索将 SSM 和 Mamba 与其它方法组合起来创造更强大的架构,比如机器之心曾报告过《Mamba 可以替代 Transformer,但它们也能组合起来使
  • 1