模拟
全面梳理200+篇前沿论文,视觉生成模型理解物理世界规律的通关密码,都在这篇综述里了!
AIxiv专栏是AI在线发布学术、技术内容的栏目。 过去数年,AI在线AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。 如果您有优秀的工作想要分享,欢迎投稿或者联系报道。
ScienceAI 2024 「AI+气象科学&宇宙&物理学」专题年度回顾
编辑丨&过去,我们仰望星空,俯瞰大地,伸手能触及到星河的浩瀚,也能感受到星尘最细微的轨迹。 2024,我们走出了阴霾,再一次向着人类的最终的浪漫前进。 近年来出彩的科幻电影,日益令人担忧的自然灾害,暗示着人们需要对于脚下与头顶潜在的可能性保持关注。
智能体模拟《西部世界》一样的社会,复旦大学等出了篇系统综述
AIxiv专栏是AI在线发布学术、技术内容的栏目。 过去数年,AI在线AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。 如果您有优秀的工作想要分享,欢迎投稿或者联系报道。
LeCun转帖,AI精确计算宇宙「设置」,登Nature子刊
编辑 | 白菜叶让「AI 告诉你宇宙中有什么?」Meta 首席人工智能科学家、图灵奖得主 Yann LeCun 在 X 上转发了纽约大学物理系教授 Shirley Ho 的帖子。Ho 在帖子中表示她所在的由 Changhoon Hahn 领导的 SimBIG 团队新发布了一篇论文。他们借助 AI 模拟宇宙,产生了许多新见解。「这是第一次通过光谱望远镜 (Sdssurveys) 很好地模拟了宇宙,以便将其与实际宇宙进行比较!我们模拟了 20,000 个这样的宇宙!」她表示,「对于每个模拟宇宙,它都会为你提供汇总统计数
2.5天完成1年的MD计算?DeepMind团队基于欧几里得Transformer的新计算方法
编辑 | 萝卜皮近年来,基于从头算参考计算的机器学习力场 (MLFF) 的开发取得了巨大进展。虽然实现了较低的测试误差,但由于担心在较长的模拟时间范围内会出现不稳定性,MLFF 在分子动力学 (MD) 模拟中的可靠性正面临越来越多的审查。研究表明,对累积不准确性的稳健性与 MLFF 中使用等变表示之间存在潜在联系,但与这些表示相关的计算成本可能会在实践中限制这种优势。为了解决这个问题,Google DeepMind、柏林工业大学(TU Berlin)的研究人员提出了一种名为 SO3krates 的 transfor
强过「黄金标准」,快3,500倍,成本低10万倍,物理建模融合AI,谷歌天气模型登Nature
编辑 | KX地球正以前所未有的方式变暖,但气温升高对我们的未来意味着什么尚不完全清楚。全球哪些地区将面临长期干旱?大型热带风暴将使哪些沿海地区的洪灾更加频繁?为了回答这些问题,科学家需要能够准确预测地球气候。现在,Google Research 研究团队提出一种将传统的基于物理建模与 ML 相结合的新方法——NeuralGCM,可以准确高效地模拟地球大气层。比现有模型更快、计算成本更低、更准确。NeuralGCM 可以生成 2-15 天的天气预报,比目前基于物理的「黄金标准」模型更准确。在 1 至 10 天预报方
微软发布 MatterSim 模型:模拟材料、预测性能,AI 探索材料设计的无限可能
微软研究院科学智能中心(Microsoft Research AI for Science)近日推出 MatterSim 模型,能够在广泛的元素、温度和压力范围内,准确高效地模拟材料和预测性能,助力材料设计的数字化转型。新材料探索对纳米电子学、能量储存和医疗健康等多个领域的技术进步至关重要。材料设计中的一个核心难点是如何在不进行实际合成和测试的情况下预测材料属性。由于新材料可能涉及元素周期表中 118 种元素的任意组合,且其合成和工作温度、压力范围极广,这些因素极大地影响了材料内部原子的相互作用,使得准确预测材料属
流浪地球里的数字生命计划启动了?DeepMind在电脑里造果蝇,网友:能造人吗?
「质疑图恒宇,理解图恒宇,成为图恒宇。」在《流浪地球 2》中,刘德华饰演的图恒宇是一个令人印象深刻的角色。为了让在车祸中去世的女儿拥有「完整的一生」,他不顾人类世界对「数字生命计划」的禁令,一直在暗中独自努力完善数字生命的架构,并最终决定公然违规,将女儿的数据上传至量子计算机,之后因此被捕入狱。 电影《流浪地球 2》中的数字生命图丫丫。电影上映后,有关「数字生命」的话题经过了很多讨论。最近,这个话题被再次提起,起因是不少失去亲友的人正在尝试用 AI 技术「复活
光学算法简化模拟人工智能训练
编辑 | 白菜叶研究人员开发了一系列模拟和其他非常规机器学习系统,期望它们将证明比今天的计算机更节能。但是训练这些人工智能来完成它们的任务一直是一个很大的绊脚石。NTT 设备技术实验室和东京大学的研究人员现在表示,他们已经提出了一种训练算法(NTT 上个月宣布),该算法对让这些系统实现其承诺大有帮助。他们的结果建立在光学模拟计算机上,代表了在获得研究人员长期以来从「非常规」计算机架构中寻求的潜在效率增益方面取得的进展。现代人工智能程序使用一种名为人工神经网络的受生物学启发的架构来执行图像识别或文本生成等任务。控制计
比现有方法快1000倍!华盛顿大学和微软团队使用图神经网络从单个蛋白质结构中预测隐藏Pocket的位置
编辑 | 萝卜皮有的蛋白质在基态结构中缺乏 Pocket,因此被认为是「不可成药的蛋白质」。通过靶向隐藏 Pocket,可以在「不可成药的蛋白质」中寻找新的机会,来扩大药物发现的范围。然而,识别隐藏 Pocket 是一项劳动密集型且十分缓慢的工作。能否准确快速地预测结构,以及在何处可能形成隐藏 Pocket 的能力,可以加快寻找隐藏 Pocket 的速度。在这里,华盛顿大学和微软团队的研究人员介绍了 PocketMiner,这是一种图形神经网络,经过训练可以预测分子动力学模拟中 Pocket 可能打开的位置。将 P
一块V100运行上千个智能体、数千个环境,这个「曲率引擎」框架实现RL百倍提速
在强化学习研究中,一个实验就要跑数天或数周,有没有更快的方法?近日,来自 SalesForce 的研究者提出了一种名为 WarpDrive(曲率引擎)的开源框架,它可以在一个 V100 GPU 上并行运行、训练数千个强化学习环境和上千个智能体。实验结果表明,与 CPU+GPU 的 RL 实现相比,WarpDrive 靠一个 GPU 实现的 RL 要快几个数量级。
WAIC 2021 | SynSense时识科技首席科学家 Giacomo Indiveri:低功耗人工智能计算系统中的类脑策略
在 WAIC 2021 AI 开发者论坛上,苏黎世大学与苏黎世联邦理工学院终身教授、苏黎世神经信息研究所 INI 所长、SynSense 时识科技联合创始人 & 首席科学家 Giacomo Indiveri 带来主题为《低功耗人工智能计算系统中的类脑策略》的线上主旨演讲。以下为 Giacomo Indiveri 在 WAIC 2021 AI 开发者论坛上的演讲内容,机器之心进行了不改变原意的编辑、整理:大家好,我是 Giacomo Indiveri,来自苏黎世大学及苏黎世联邦理工神经信息研究所,很高兴有机会在这里跟
- 1