Mirkin

准确率达 95%,机器学习预测复杂新材料合成

编辑/绿萝科学家和机构每年都投入非常多的资源来发现新材料,以期为燃料提供催化剂。随着自然资源的减少,以及对更高价值和先进性能产品的需求增长,研究人员越来越多地关注到纳米材料。但识别新材料的连续实验方法对材料发现施加了不可逾越的限制。近日,美国西北大学和丰田研究所(TRI)的研究人员应用机器学习来指导新纳米材料的合成,消除了材料发现相关的障碍。这种训练有素的算法,可通过定义数据集来准确预测可用于清洁能源、化学和汽车行业燃料的重要催化剂。该研究以「Machine learning–accelerated design
  • 1