门控

手把手教你,从零开始实现一个稀疏混合专家架构语言模型(MoE)

本文介绍了实现一个稀疏混合专家语言模型(MoE)的方法,详细解释了模型的实施过程,包括采用稀疏混合专家取代传统的前馈神经网络,实现 top-k 门控和带噪声的 top-k 门控,以及采用 Kaiming He 初始化技术。作者还说明了从 makemore 架构保持不变的元素,比如数据集处理、分词预处理和语言建模任务。最后还提供了一个 GitHub 仓库链接,用于实现模型的整个过程,是一本不可多得的实战教科书。内容简介在混合专家模型 Mixtral 发布后,混合专家模型(MoE)越来越受到人们的关注。在稀疏化的混合专
  • 1