Memory3
鄂维南院士领衔新作:大模型不止有RAG、参数存储,还有第3种记忆
2.4B 的 Memory3比更大的 LLM 和 RAG 模型获得了更好的性能。近年来,大型语言模型 (LLM) 因其非凡的性能而获得了前所未有的关注。然而, LLM 的训练和推理成本高昂,人们一直在尝试通过各种优化方法来降低成本。本文来自上海算法创新研究院、北京大学等机构的研究者受人类大脑记忆层次结构的启发,他们通过为 LLM 配备显式记忆(一种比模型参数和 RAG 更便宜的记忆格式)来降低这一成本。从概念上讲,由于其大部分知识都外化为显式记忆,因而 LLM 可以享受更少的参数大小、训练成本和推理成本。论文地址:
7/10/2024 11:40:00 AM
机器之心
院士领衔推出大模型的第 3 种记忆:比参数存储和 RAG 都便宜,2.4B 模型越级打 13B
给大模型加上第三种记忆格式,把宝贵的参数从死记硬背知识中解放出来!中科院院士鄂维南领衔,上海算法创新研究院等团队推出 Memory3,比在参数中存储知识以及 RAG 成本都更低,同时保持比 RAG 更高的解码速度。在实验中,仅有 2.4B 参数的 Memory3 模型不仅打败了许多 7B-13B 的模型,在专业领域任务如医学上的表现也超过了传统的 RAG 方法,同时推理速度更快,“幻觉”问题也更少。目前相关论文已上传到 arXiv,并引起学术界关注。知识按使用频率分类这一方法受人脑记忆原理启发,独立于存储在模型参数
7/8/2024 11:09:43 PM
清源
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
苹果
人形机器人
深度学习
AI视频
模态
字节跳动
xAI
驾驶
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型