MAGIK

几何深度学习揭示微观运动的时空特征

编辑 | 白菜叶生命系统中动力学过程的表征为其机械解释和与生物功能的联系提供了重要线索。由于显微镜技术的最新进展,现在可以在生理条件下以多个时空尺度常规记录细胞、细胞器和单个分子的运动。然而,在拥挤和复杂的环境中发生的动态自动分析仍然落后于微观图像序列的获取。在这里,哥德堡大学的研究人员提出了一个基于几何深度学习的框架,可以在各种生物学相关场景中实现对动力学特性的准确估计。这种深度学习方法依赖于由基于注意力的组件增强的图形神经网络。通过使用几何先验处理对象特征,网络能够执行多项任务,从将坐标链接到轨迹到推断局部和全
  • 1