论文解读
【论文解读】System 2 Attention提高大语言模型客观性和事实性
一、简要介绍 本文简要介绍了论文“System 2 Attention (is something you might need too) ”的相关工作。基于transformer的大语言模型(LLM)中的软注意很容易将上下文中的不相关信息合并到其潜在的表征中,这将对下一token的生成产生不利影响。为了帮助纠正这些问题,论文引入了System 2 Attention(S2A),它利用LLM的能力,用自然语言进行推理,并遵循指示,以决定要处理什么。S2A重新生成输入上下文以使输入上下文只包含相关部分,然后再处理重新
5/11/2024 11:03:00 AM
合合信息
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
AI绘画
DeepSeek
机器人
数据
谷歌
大模型
Midjourney
智能
模型
用户
学习
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
英伟达
GPU
AI for Science
机器学习
场景
预测
华为
伟达
Transformer
Anthropic
模态
深度学习
百度
驾驶
AI视频
文本
苹果
搜索
神器推荐
算力
LLaMA
Copilot
安全
科技
xAI
视频生成
应用
字节跳动
干货合集
人形机器人
2024
具身智能
特斯拉
视觉
亚马逊
语音
大语言模型
AGI
Claude
AI应用场景