LigandMPNN
比Rosetta快250倍,亲和力提升百倍,David Baker开发原子上下文条件蛋白序列设计新工具
编辑 | 萝卜皮小分子、核苷酸和金属离子条件下的蛋白质序列设计,对于酶和小分子结合剂以及传感器设计至关重要。 但是,当前最先进的深度学习序列设计方法无法对非蛋白质原子和分子进行建模。 华盛顿大学的 Cameron Glasscock、David Baker 团队提出了一种基于深度学习的蛋白质序列设计方法,称为 LigandMPNN,该方法可以模拟生物分子系统的所有非蛋白质成分。
3/31/2025 2:04:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
苹果
人形机器人
深度学习
AI视频
模态
字节跳动
xAI
驾驶
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型