LangChain

基于LangChain和云原生向量数据库Milvus开发混合搜索AI程序

译者 | 朱先忠审校 | 重楼本文将探讨基于LangChain框架和云原生向量数据库Milvus并将密集嵌入与稀疏嵌入结合起来开发混合搜索型AI程序的实战过程。 简介最近,我们——来自IBM研究中心的团队——需要在Milvus向量存储中使用混合搜索技术。 因为我们已经在使用LangChain框架,所以我们决定一鼓作气贡献出在langchain-milvus中启用这一功能所需的一切。

为什么都放弃了LangChain?

或许从诞生那天起,LangChain 就注定是一个口碑两极分化的产品。看好 LangChain 的人欣赏它丰富的工具和组建和易于集成等特点,不看好 LangChain 的人,认为它注定失败 —— 在这个技术变化如此之快的年代,用 LangChain 来构建一切根本行不通。夸张点的还有:「在我的咨询工作中,我花了 70% 的精力来说服人们不要使用 langchain 或 llamaindex。这解决了他们 90% 的问题。」最近,一篇 LangChain 吐槽文再次成为热议焦点:作者 Fabian Both 是 AI

奋战一年,LangChain首个稳定版本终于发布,LangGraph把智能体构建为图

著名的大模型智能体工具,现在有大版本更新了。不知不觉,LangChain 已经问世一年了。作为一个开源框架,LangChain 提供了构建基于大模型的 AI 应用所需的模块和工具,大大降低了 AI 应用开发的门槛,使得任何人都可以基于 GPT-4 等大模型构建自己的创意应用。在过去的一年中,LangChain 自身也一直在进化。刚刚,LangChain 官方宣布,他们的首个稳定版本 ——LangChain v0.1.0 问世了。新版本有以下几个重要特点:   可观察性:构建复杂的 LLM 应用是困难的。为了更好地进

我为什么放弃了 LangChain?

如果你关注了过去几个月中人工智能的爆炸式发展,那你大概率听说过 LangChain。简单来说,LangChain 是一个 Python 和 JavaScript 库,由 Harrison Chase 开发,用于连接 OpenAI 的 GPT API(后续已扩展到更多模型)以生成人工智能文本。更具体地说,它是论文《ReAct: Synergizing Reasoning and Acting in Language Models》的实现:该论文展示了一种提示技术,允许模型「推理」(通过思维链)和「行动」(通过能够使用
  • 1