KAN
爆火后反转?「一夜干掉MLP」的KAN:其实我也是MLP
KAN 作者:我想传达的信息不是「KAN 很棒」,而是「尝试批判性地思考当前的架构,并寻求从根本上不同的替代方案,这些方案可以完成有趣、有用的事情。」多层感知器(MLP),也被称为全连接前馈神经网络,是当今深度学习模型的基础构建块。MLP 的重要性无论怎样强调都不为过,因为它们是机器学习中用于逼近非线性函数的默认方法。但是最近,来自 MIT 等机构的研究者提出了一种非常有潜力的替代方法 ——KAN。该方法在准确性和可解释性方面表现优于 MLP。而且,它能以非常少的参数量胜过以更大参数量运行的 MLP。比如,作者表示
5/7/2024 2:36:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
AIGC
OpenAI
AI绘画
ChatGPT
机器人
数据
谷歌
智能
Midjourney
大模型
学习
GPT
DeepSeek
用户
AI创作
微软
图像
AI
开源
Meta
技术
论文
Stable Diffusion
算法
生成式
蛋白质
马斯克
芯片
Gemini
计算
神经网络
代码
AI设计
Sora
研究
腾讯
3D
开发者
GPU
场景
伟达
英伟达
预测
机器学习
华为
模态
Transformer
模型
文本
驾驶
神器推荐
深度学习
AI视频
AI for Science
苹果
搜索
干货合集
LLaMA
视频生成
算力
百度
2024
Copilot
科技
应用
Anthropic
特斯拉
AI应用场景
安全
具身智能
写作
机器
字节跳动
AGI
视觉
架构
语音
DeepMind
API