金属
量子力学与机器学习相结合,预测高温下的化学反应
编辑/凯霞在高温下从氧化物中提取金属不仅对于钢铁等金属的生产至关重要,而且对回收利用也必不可少。但当前的提取过程是碳密集型的,会排放大量温室气体。研究人员一直在探索开发「更绿色」的工艺方法。第一性原理理论的自下而上的计算过程设计,将是一个有吸引力的替代方案,但迄今为止尚未实现。来自哥伦比亚大学的研究团队开发了一种新的计算技术,将量子力学和机器学习相结合,可准确预测金属氧化物对其「贱金属」的还原温度。该方法在计算上与常规计算一样有效,并且在测试中,比使用量子化学方法对温度效应的计算要求高的模拟更准确。该研究以「Aug
12/13/2021 6:24:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
ChatGPT
AI
AI绘画
DeepSeek
机器人
数据
谷歌
大模型
智能
Midjourney
用户
学习
模型
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
GPU
AI for Science
英伟达
机器学习
场景
伟达
预测
华为
Transformer
模态
Anthropic
百度
驾驶
深度学习
文本
AI视频
苹果
搜索
神器推荐
算力
LLaMA
科技
视频生成
安全
应用
xAI
干货合集
Copilot
2024
字节跳动
特斯拉
人形机器人
具身智能
亚马逊
语音
视觉
AI应用场景
写作
AGI
Claude