交通

港大发布OpenCity: 大模型驱动下的智慧城市"新内核"

代码链接: : :  导读精确的交通预测是实现高效城市规划和交通管理的关键,它有助于优化资源分配并改善出行体验。但是,现有的预测模型在面对未知区域和城市的零样本预测任务,以及长期预测时,表现往往不尽如人意。这些问题主要归因于交通数据在空间和时间上的异质性,以及跨时间和空间的显著分布变化。在本研究中,我们的目标是开发一个多功能、强鲁棒性和高适应性的时空基础模型,用于交通流量的预测。为此,我们设计了一种新型的基础模型——OpenCity,它能够捕捉并规范来自不同数据源的潜在时空模式,以促进在不同城市环境中的零样本泛化能

OpenCity 大模型预测交通路况:零样本下表现出色,来自港大百度

长时间交通状况预测,可以用大模型实现了。香港大学联合华南理工大学和百度,推出了长时间城市交通预测模型 ——OpenCity。而且泛化能力极强,可有效应用于广泛的交通预测场景。为了解决传统交通预测模型泛化性及长期预测能力不足的问题,研究团队新的基础模型 OpenCity。OpenCity 结合了 Transformer 架构和图神经网络,用以模拟交通数据中复杂的时空依赖关系。通过在大规模、异质性交通数据集上进行预训练,OpenCity 能够学习丰富、具有泛化性的表征,这些表征可有效应用于广泛的交通预测场景。相比于传统
  • 1