机器学习
Nature子刊,基于量子实验数据进行机器学习,用于解决量子多体问题
编辑 | 萝卜皮量子硬件实现方面的进步使得人们能够获取传统计算机无法模拟的数据。将传统机器学习 (ML) 算法与这些数据相结合,有望揭示隐藏的模式。与仅使用传统计算机相比,这种混合方法扩展了可有效解决的问题类别,但由于当前量子计算机中噪声的普遍存在,这种方法仅能用于解决受限问题。韩国首尔大学(Seoul National University)的研究人员扩展了混合方法的适用性,用于解决多体物理学中的挑战,例如预测给定哈密顿量的基态性质以及对量子相进行分类。通过在具有 127 个量子比特的超导量子硬件上进行各种减少误
「可损伤编程设计」的超材料,上海交大团队用AI实现材料的自然抗裂机制
编辑 | 萝卜皮人造超材料的断裂行为往往会导致灾难性的破坏,并且对裂纹扩展的抵抗力有限。相比之下,骨头和陶瓷等天然材料具有微观结构,可产生空间可控的裂纹路径,并且增韧材料对裂纹的抵抗力会提高。上海交通大学的研究人员提出了一种受自然强化机制启发的方法,旨在开发一种系统的设计方法,使损伤可编程超材料能够在细胞中具有可工程化的微纤维,从而能够在空间上编程微尺度裂纹行为。机器学习可用于提供有效的设计引擎,加速生成可损伤可编程单元,该单元提供先进的增韧功能,如天然材料中的裂纹弯曲、裂纹偏转和屏蔽;并针对给定的裂纹路径编程进行
ML如何推动结构生物学的发展?哈佛科学家用AI在最小尺度上研究人类发育
编辑 | 白菜叶对于结构生物学家 Lucas Farnung 来说,没有比单个受精卵如何发育成一个功能齐全的人类更令人着迷的问题了。他正努力在最小尺度上研究这一过程:数万亿个原子必须同步工作才能实现这一过程。「我看不出解决 5,000 块拼图和我们在实验室进行的研究有什么大区别。」哈佛医学院布拉瓦尼克研究所(Blavatnik Institute at Harvard Medical School)细胞生物学助理教授 Farnung 说,「我们试图从视觉上弄清楚这个过程是什么样子,然后我们就可以形成关于它如何运作的
谷歌机器人专家:机器人在现实中碰过的壁,AI也会碰
「机器学习一直生活在一个令机器人专家、化学家、生物学家和神经科学家羡慕不已的泡沫中,随着它真正开始发挥作用,我们所有人都将遇到其他人多年来一直在应对的同样的现实壁垒。」有人说,机器人领域进展缓慢,甚至和机器学习的其他子领域相比显得毫无进展。谷歌 DeepMind 机器人科学家,SayCan、RT-1、RT-2 等具身智能项目参与者 Alex Irpan 同意这一说法。但他认为,这是因为机器人学是一个和现实紧密连接的领域,现实的复杂性决定了他们不免碰壁。他还指出,这些问题不是机器人技术所独有的。同样的问题也适用于大语
登Science,药物亲和力增加37倍,AI对蛋白、抗体复合物进行无监督优化
编辑 | 萝卜皮蛋白质参与了细胞组成、肌肉收缩、消化食物、识别病毒等众多生物学功能。为了设计出更好的蛋白质(包括抗体),科学家经常在不同位置反复变异氨基酸(按一定顺序排列组成蛋白质的单位),直到使蛋白质获得所需要的功能。但氨基酸序列的数量比世界上的沙粒还要多,因此找到最佳蛋白质,进而找到最佳潜在药物,通常难度巨大。当面临这一挑战时,科学家通常会花费数百万美元,并在微型化、简化版的生物系统中进行测试。「这需要大量的猜测和验证。」斯坦福大学(Stanford University)化学工程助理教授兼 Arc 研究所创新
Llama分子嵌入优于GPT,LLM能理解分子吗?这一局Meta赢了OpenAI
编辑 | 萝卜皮OpenAI 的 GPT 和 Meta AI 的 Llama 等大型语言模型 (LLM),因其在化学信息学领域的潜力而日益受到认可,特别是在理解简化分子输入行输入系统(SMILES)方面。这些 LLM 还能够将 SMILES 字符串解码为矢量表示。加拿大温莎大学(University of Windsor)的研究人员比较了 GPT 和 Llama 与 SMILES 上的预训练模型在下游任务中嵌入 SMILES 字符串的性能,重点关注两个关键应用:分子特性预测和药物-药物相互作用预测。该研究以「Can
不做数值运算、纯靠嘴炮也能机器学习?基于自然语言的全新ML范式来了
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected];[email protected]本文作者肖镇中是德国马克思普朗克-智能系统研究所和图宾根大学的博士生,Robert Bamler 是图宾根大学机器学习方向的教授,Bernhard Schölkopf 是马克思普朗克-智能
「复活」古生物分子,AI解决抗生素耐药性,复旦、宾大合作团队两篇论文登Cell和Nature子刊
编辑 | 萝卜皮抗生素耐药性感染每年在全球造成约 127 万人死亡,预计到 2050 年,如果没有特效的新药,每年死亡人数将达到 1000 万人,因此需要采取紧急措施来应对抗生素耐药性。宾夕法尼亚大学的校长助理教授(Presidential Assistant Professor) Cesar de la Fuente 说:「即使感觉身体好些了,也要确保完成抗生素疗程,这是许多人听过,但经常忽视的医学口头禅。」他解释道,这句话至关重要,不遵守规定可能会影响抗生素的使用功效。「近几十年来,这导致了耐药细菌的增加,全球
具身智能体三维感知新链条,TeleAI &上海AI Lab提出多视角融合具身模型「SAM-E」
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected];[email protected]当我们拿起一个机械手表时,从正面会看到表盘和指针,从侧面会看到表冠和表链,打开手表背面会看到复杂的齿轮和机芯。每个视角都提供了不同的信息,将这些信息综合起来才能理解操作对象的整体三维。想让
ChatGPT如何「思考」?心理学和神经科学破解AI大模型,Nature发文
编辑 | X美国东北大学的计算机科学家 David Bau 非常熟悉这样一个想法:计算机系统变得如此复杂,以至于很难跟踪它们的运行方式。「我做了 20 年的软件工程师,研究非常复杂的系统。这个问题总是存在的。」Bau 说。但 Bau 说,使用传统软件,具有内部知识的人通常可以推断出发生了什么。例如,如果一个网站在谷歌搜索中的排名下降,在谷歌工作了十几年的 Bau,会很清楚原因。他说,当前的人工智能(AI)「真正让我感到恐惧的是」:「没有这样的理解」,即使在构建它的人中也是如此。最新一波人工智能在很大程度上依赖于机器
OpenAI和Moderna合作,推进mRNA医学
编辑 | X4 月 24 日,Moderna 和 OpenAI 宣布双方继续开展合作,共同创新,共同愿景是 AI 在未来商业和医疗保健领域的变革潜力。Moderna 是 mRNA 医学领域创建的领导者,自成立以来就一直利用机器学习的力量。强大的数据基础及其强大的学习文化,使公司能够负责任地、无缝地将生成式 AI 集成到其运营中,并利用下一代人工智能创新。双方于 2023 年初开始合作,推出了 Moderna 自己的 ChatGPT 实例(称为 mChat),该实例内部构建于 OpenAI 的 API 之上。自首次亮
低成本、准确、稳健,各类分子通用,上海人工智能实验室开发MD模拟AI新方法
编辑 | 绿萝机器学习原子间势(MLIP)因其兼顾高精度和高效率的优势,在材料、化学、生物学等领域的大尺度原子模拟研究中引起了广泛关注。然而,高性能 MLIP 依赖于大量标记数据,通过从头计算获取这些数据的成本很高。近日,上海人工智能实验室、复旦大学和清华大学的研究团队,提出了一种 MLIP 的几何学习框架 GPIP,利用未标记的构型来提高 MLIP 的性能。研究表明,GPIP 只需少量的计算成本即可显著提高 MLIP 的准确性和泛化性,并且与不同的不变或等变图神经网络架构兼容。该方法增强了 MLIP,并推进了分子
对25,000多个原子进行纳秒级MD模拟,DeepMind开发基于ML的大规模分子模拟通用方法
编辑 | 萝卜皮分子动力学 (MD) 模拟可以深入了解复杂的过程,但准确的 MD 模拟需要昂贵的量子力学计算。对于较大的系统,使用高效但不太可靠的经验力场。机器学习力场(MLFF)提供与从头计算方法相当的精度,速度更快更高效,但难以模拟大分子中的长程相互作用。Google DeepMind、柏林工业大学(Technische Universität Berlin)和卢森堡大学(University of Luxembourg)的研究人员提出了一种通用方法 GEMS,通过对「自下而上」和「自上而下」分子片段进行训练,
AI在用| 万万没想到,科技论文还能这么读
机器之能报道编辑:Cardinal以大模型、AIGC为代表的人工智能浪潮已经在悄然改变着我们生活及工作方式,但绝大部分人依然不知道该如何使用。因此,我们推出了「AI在用」专栏,通过直观、有趣且简洁的人工智能使用案例,来具体介绍AI使用方法,并激发大家思考。 我们也欢迎读者投稿亲自实践的创新型用例。Claude 3 具有非常大的内存( 200k 上下文窗口)和很强的调用准确性,它的上下文能力也因此成为最受欢迎、应用最广的技能。我们介绍过如何利用这种能力,没时间收听播客也能获取核心内容。今天,我们再介绍一个新技能,
计算蛋白质工程最新SOTA方法,牛津团队用密码子训练大语言模型
编辑 | 萝卜皮来自深度语言模型的蛋白质表征,已经在计算蛋白质工程的许多任务中表现出最先进的性能。近年来,进展主要集中在参数计数上,最近模型的容量超过了它们所训练的数据集的大小。牛津大学(University of Oxford)的研究人员提出一个替代方向。他们证明,在密码子而不是氨基酸序列上训练的大型语言模型可以提供高质量的表征,并且在各种任务中都优于同类最先进的模型。在某些任务中,例如物种识别、蛋白质和转录本丰度预测等,该团队发现,基于密码子训练的语言模型优于所有其他已发布的蛋白质语言模型,包括一些包含超过 5
如果 LLM Agent 成为了科学家:耶鲁、NIH、Mila、上交等学者共同呼吁安全防范的重要性
最近的大型语言模型(LLMs)进步已经使我们处于革命性的时代,尤其是 LLMs 驱动的智能 Agents 在广泛任务中展现出了通用性和有效性。这些被称为「AI 科学家」的 Agent 已经开始探寻其在生物学和化学等各种领域内进行自主科学发现的潜力。此类 Agents 已经表现出了选择适合任务的工具,规划环境条件,以及实现实验自动化的能力。因此,Agent 可摇身一变成为真实的科学家,能够有效地设计和开展实验。在某些领域如化学设计中,Agent 所展现的能力已经超过了大部分非专业人士。然而,当我们享受着这种自动化 A
登 Nature 子刊,滑铁卢大学团队评论「量子计算机+大语言模型」当下与未来
编辑 | X模拟当今量子计算设备的一个关键挑战,是学习和编码量子比特之间发生的复杂关联的能力。基于机器学习语言模型的新兴技术已经显示出学习量子态的独特能力。近日,加拿大滑铁卢大学的研究人员在《Nature Computational Science》发表题为《Language models for quantum simulation》 的 Perspective 文章,强调了语言模型在构建量子计算机方面所做出的贡献,并讨论了它们在量子优势竞争中的未来角色。论文链接:,最近许多设备都声称具有量子优势。经典计算能力的
聚类精度超96%,机器学习新算法可实现更高脑机接口性能
编辑 | 萝卜皮使用多个电极记录神经元活动已被广泛用于了解大脑的功能机制。增加电极数量使科学家能够解码更多种类的功能。然而,由于硬件资源有限和不可避免的热组织损伤,处理大量多通道电生理数据仍然具有挑战性。在这里,韩国大邱庆北科学技术院(DGIST,Daegu Gyeongbuk Institute of Science & Technology)的研究团队提出了基于机器学习(ML)的高频神经元尖峰从二次采样的低频信号重建。受到图像处理中高频恢复和超分辨率之间等效性的启发,研究人员将 Transformer ML 模