IDR
精确预测相分离蛋白质,同济&中国科学院机器学习预测器PSPire
编辑 | 萝卜皮对蛋白质相分离(PS)的理解的迅速发展带来了丰富的生物信息学工具来预测相分离蛋白质(PSP)。这些工具通常偏向于具有大量本质无序区域 (IDR) 的 PSP,因此经常低估没有 IDR 的潜在 PSP。并且,PS 不仅受 IDR 控制,还受结构化模块结构域以及不直接反映在氨基酸序列的其他相互作用影响。在最新的研究中,同济大学和中国科学院的研究团队开发了 PSPIre,一种机器学习预测器,它结合了残基级和结构级特征,用于精确预测 PSP。与当前的 PSP 预测因子相比,PSPire 在识别没有 IDR
多伦多大学团队使用AlphaFold获得对蛋白质结构的新见解
编辑 | 萝卜皮AlphaFold 蛋白质结构数据库包含数百万种蛋白质的预测结构。对于大多数含有本质无序区域 (IDR) 的人类蛋白质,这些区域不采用稳定的结构,通常认为这些区域具有较低的 AlphaFold2 置信度分数,反映了低置信度的结构预测。多伦多大学(University of Toronto)的研究团队表明 AlphaFold2 为近 15% 的人类 IDR 分配了可信结构。通过与已知条件折叠(即在结合或其他特定条件下)的 IDR 子集的实验 NMR 数据进行比较,研究人员发现 AlphaFold2 通
- 1