华中科技大学

多模态大模型有了统一分割框架,华科PSALM多任务登顶,模型代码全开源

最近,多模态大模型(LMM)取得了一系列引人注目的成就,特别是在视觉 - 语言任务上的表现令人瞩目。它们的成功不仅展现了多模态大模型在各个领域的实用性和灵活性,也为更多视觉场景下的应用探索了新的道路。尽管如此,在将 LMM 应用到计算机视觉任务上时,我们仍面临一个关键挑战:大多数 LMM 目前只限于文本输出,这限制了它们在处理更细粒度的视觉任务,如图像分割方面的能力。此外,图像分割领域内部的需求多样化,任务各异 —— 实例分割需为每个对象分配唯一 ID 并计算类别信赖度,指代分割(RES)则需要基于描述性语句来识别

通用文档理解新SOTA,多模态大模型TextMonkey来了

最近,华中科技大学和金山的研究人员在多模态大模型 Monkey [1](Li et al., CVPR2024)工作的基础上提出 TextMonkey。在多个场景文本和文档的测试基准中,TextMonkey 处于国际领先地位,有潜力带来办公自动化、智慧教育、智慧金融等行业应用领域的技术变革。论文链接:: 是一个专注于文本相关任务(包括文档问答和场景文本问答)的多模态大模型(LMM)。相比于 Monkey,TextMonkey 在多个方面进行改进:通过采用零初始化的 Shifted Window Attention,
  • 1