HTE

比手动快13倍多,「机器人+AI」发现电池最佳电解质,加速材料研究

编辑 | 紫罗传统的材料研发模式主要依赖「试错」的实验方法或偶然性的发现,其研发过程一般长达 10-20 年。虽然基于机器学习 (ML) 的数据驱动方法可以加速清洁能源技术新材料的设计,但由于缺乏大型高保真实验数据库,其在材料研究中的实际应用仍然受到限制。近日,美国西北太平洋国家实验室和阿贡国家实验室的研究团队,设计了一个高度自动化的工作流程,将高通量实验平台与最先进的主动学习算法相结合,可有效筛选对阳极电解质具有最佳溶解度的二元有机溶剂。除了设计用于开发高性能氧化还原液流电池的高效工作流程之外,该机器学习引导的高
  • 1