国防科技大学
首个公开发表的SAR图像目标识别基础模型!国防科大刘永祥&刘丽教授团队提出SARATR-X 1.0
合成孔径雷达(Synthetic Aperture Radar, SAR)作为一种基于电磁波的主动探测技术,具有全天时、全天候的对地观测能力,已发展成为一种不可或缺的对地观测工具,在军民很多领域均有着重要的应用。 目标识别(Automatic target recognition,ATR)是 SAR 图像智能解译的核心问题,旨在对 SAR 图像中典型目标(通常为车辆、舰船和飞机等目标)进行自动定位和分类,复杂、开放、对抗环境下的 SAR 目标识别要做到高精准、高敏捷、强稳健、省资源,仍然面临很多挑战。 当前,SAR 目标识别主要面临两个层面挑战。
如何让细胞进行计算?国内四高校提出生物计算元器件设计全新方法,登Cell
编辑 | 萝卜皮作者 | 论文团队细胞犹如一台计算机,每时每秒都在接收、分析和处理来自环境中的不同信息:外界信息通过细胞内高度并行的信号转导途径进行分析和处理,进而以预定义的方式从「存储设备」(即 DNA)中读取信息(基因的表达)或写入指令(DNA 修饰和编辑),指导自身或周围细胞对环境信息做出响应。一直以来,如何有效利用生物体本身的计算能力,通过对生物体进行改造使之能够执行人类给定的计算任务,并由此开发出基于生物系统的新概念计算机都是计算机科学与生物技术领域交叉融合的热点问题。近期,来自国防科技大学、西湖大学、浙
抛弃编码器-解码器架构,用扩散模型做边缘检测效果更好,国防科大提出DiffusionEdge
现有的深度边缘检测网络通常基于包含了上下采样模块的编码器 - 解码器架构,以更好的提取多层次的特征,但这也限制了网络输出既准又细的边缘检测结果。针对这一问题,一篇 AAAI 2024 上的论文给出了新的解决方案。论文题目:DiffusionEdge: Diffusion Probabilistic Model for Crisp Edge Detection作者:叶云帆(国防科技大学),徐凯(国防科技大学),黄雨行(国防科技大学),易任娇(国防科技大学),蔡志平(国防科技大学)论文链接: : iGRAPE Lab
- 1