构象
高精度预测蛋白构象变化,中国科大、上科大通用深度学习模型
编辑 | KX预测蛋白质构象变化是计算生物学和人工智能领域的一大挑战。 主流的 AlphaFold 等算法可以高通量预测蛋白质的静态结构,但对蛋白质构象变化预测却束手无策。 为了解决这个问题,中国科学技术大学和上海科技大学的研究人员,提出了一种新颖的深度学习策略,即利用高通量生物物理采样来规避与蛋白质构象转变相关的数据匮乏。
准确预测蛋白质「运动」?AlphaFold融合物理知识,南京大学团队蛋白构象运动新策略
编辑 | KX蛋白质如何进行构象运动,不仅是一个基本的生物物理问题,而且对于药物设计等实际应用也至关重要。尽管深度学习方法,比如 AlphaFold2 和 RoseTTAFold,可以高通量预测蛋白质的静态结构,但预测构象运动仍然是一个挑战。在此,南京大学、香港浸会大学(Hong Kong Baptist University)、中国科学院大学以及昌平实验室和莱斯大学合作,找到了一种新的方法来预测蛋白质在发挥作用时如何改变形状,这对于了解它们在生物系统中的工作方式非常重要。研究人员提出了一种解决构象运动的策略,即将
Nature子刊,优于AlphaFold,全原子采样,一种预测肽结构的AI方法
编辑 | 萝卜皮深度学习方法推动了生物分子结构单态预测的重大进展。然而,生物分子的功能取决于它们可以呈现的构象范围。对于肽来说尤其如此,肽是一类高度灵活的分子,参与多种生物过程,作为治疗手段备受关注。多伦多大学的 Philip M. Kim 和 Osama Abdin 开发了 PepFlow,这是一种可转移生成模型,它能够从输入肽的允许构象空间中直接进行全原子采样。研究人员在扩散框架中训练模型,然后使用等效流进行构象采样。为了克服广义全原子建模的成本过高,他们模块化了生成过程并集成了超网络来预测序列特定的网络参数。
科学家用分子动力学和AlphaFold,揭示了转运蛋白的未解结构
编辑 | 萝卜皮转运蛋白改变其构象以携带其底物穿过细胞膜。构象动力学对于理解运输功能至关重要。日本国立自然科学研究院(National Institutes of Natural Sciences)和冈山大学(Okayama University)的合作团队研究了草酸转运蛋白(OxlT),这是一种来自产酸草酸杆菌的草酸:甲酸逆向转运蛋白,对于避免肾结石形成具有重要意义。OxlT 的原子结构最近已在向外开放和封闭状态下得到解决。然而,向内开放的构象仍然缺失,阻碍了研究人员对转运蛋白的完整理解。在最新的研究中,该团队进
优于3D模型,成功率达90.6%,基于扩散的生成式AI从2D分子图探索过渡态
TSDiff 预测分布的概念说明。(来源:论文)编辑 | X过渡态(TS)探索对于阐明化学反应机制和动力学建模至关重要。最近,机器学习模型在 TS 几何形状(geometries)预测方面表现出了卓越的性能。然而,它们通常需要反应物和产物的 3D 构象,并以其适当的方向作为输入,这需要大量的努力和计算成本。近日,韩国科学技术院(KAIST)的研究人员提出了一种基于随机扩散方法的生成方法,即 TSDiff,用于仅从 2D 分子图预测 TS 几何形状。TSDiff 在准确性和效率方面均优于现有的具有 3D 几何形状的
实现量子化学精度,同时规避几何弛豫瓶颈,深度对比学习用于分子性质有效预测
编辑 | 紫罗数据驱动的深度学习算法可以准确预测高级量子化学分子特性。然而,它们的输入必须限制在与训练数据集相同的量子化学几何弛豫水平,从而限制了它们的灵活性。采用替代的经济有效的构象生成方法会引入域偏移(domain-shift)问题,从而降低预测精度。近日,来自韩国首尔大学的研究人员提出了一种基于深度对比学习的域适应(domain-adaptation)方法,称为局部原子环境对比学习(Local Atomic environment Contrastive Learning,LACL)。LACL 通过比较不同的
Nature | 通过序列聚类和 AlphaFold2 预测多种构象
编辑 | XAlphaFold2 (AF2) 通过准确预测蛋白质的单一结构彻底改变了结构生物学。然而,蛋白质的生物学功能通常取决于多种构象亚状态,而致病的点突变往往会导致这些亚状态内的种群变化。来自布兰迪斯大学和霍华德·休斯医学研究所(Brandeis University and Howard Hughes Medical Institute)、哈佛大学和剑桥大学的研究团队,研究证明通过序列相似性对多序列比对 (MSA) 进行聚类,使 AF2 能够以高置信度对已知变形蛋白(metamorphic protein)
蛋白质侧链预测新方法DiffPack:扩散模型也能精准预测侧链构象!
有效预测蛋白质侧链构象,更加精准啦!
- 1