高斯
ICLR 2024 Spotlight | NoiseDiffusion: 矫正扩散模型噪声,提高插值图片质量
作者 | Pengfei Zheng单位 | USTC, HKBU TMLR Group最近生成式AI的迅猛发展为文本到图像生成、视频生成等令人瞩目的领域注入了强大的动力,这些技术的核心在于扩散模型的应用。扩散模型首先通过定义一个不断加噪声的前向过程来将图片逐步变为高斯噪声,再通过逆向过程将高斯噪声逐步去噪变为清晰图片以得到采样。其中扩散常微分模型可以被用于生成的图片的插值,这在生成视频以及一些广告创意上有着极大的应用潜力。然而,我们注意到,当这种方法应用于自然图片时,插值出的图片效果往往不尽如人意。通常情况下,扩
5/6/2024 11:59:00 AM
TMLRGroup
- 1
资讯热榜
标签云
人工智能
AIGC
OpenAI
AI绘画
ChatGPT
机器人
数据
谷歌
智能
Midjourney
大模型
学习
GPT
DeepSeek
用户
AI创作
微软
图像
AI
开源
Meta
技术
论文
Stable Diffusion
算法
生成式
蛋白质
马斯克
芯片
Gemini
计算
神经网络
代码
AI设计
Sora
研究
腾讯
3D
开发者
GPU
场景
伟达
英伟达
预测
机器学习
模态
华为
Transformer
模型
文本
驾驶
神器推荐
深度学习
AI视频
AI for Science
苹果
搜索
干货合集
LLaMA
视频生成
算力
百度
2024
Copilot
科技
应用
特斯拉
Anthropic
AI应用场景
安全
具身智能
写作
机器
字节跳动
AGI
视觉
架构
语音
DeepMind
亚马逊