高级

NeurIPS 2024 | 用LLM探寻隐秘的因果世界

因果发现的现实挑战:稀缺的高级变量寻找并分析因果关系是科学研究中的重要一环,而现有的因果发现算法依赖由专家预先定义的高级变量。 现实场景中的原始数据往往是图片、文本等高维非结构化数据, 结构化的高级变量是十分稀缺的,导致现有的因果发现和学习算法难以用于至更广泛的数据。 因此,香港浸会大学与MBZUAI、卡内基梅隆大学、香港中文大学、悉尼大学以及墨尔本大学合作发表论文《Discovery of the Hidden World with Large Language Models》,提出了一个名为 COAT 的新型框架,旨在利用大型语言模型和因果发现方法的优势,突破传统因果发现方法的局限性,更有效地在现实世界中定义高级变量、理解因果关系。
  • 1