FPGA’24
比A100性价比更高!FlightLLM让大模型推理不再为性能和成本同时发愁
大语言模型在端侧的规模化应用对计算性能、能效比需求的“提拽式”牵引,在算法与芯片之间,撕开了一道充分的推理竞争场。面对想象中的终端场景,基于 GPU 和 FPGA 的推理方案的应用潜力需要被重新审视。近日,无问芯穹、清华大学和上海交通大学联合提出了一种面向 FPGA 的大模型轻量化部署流程,首次在单块 Xilinx U280 FPGA 上实现了 LLaMA2-7B 的高效推理。第一作者为清华大学电子系博士及无问芯穹硬件负责人曾书霖,通讯作者为上海交通大学副教授、无问芯穹联合创始人兼首席科学家戴国浩,清华大学电子工程
1/10/2024 5:00:00 PM
李亚洲
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
人形机器人
苹果
深度学习
AI视频
模态
字节跳动
xAI
驾驶
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型