FP
CVPR 2021 | Facebook提出FP-NAS:搜索速度更快、分类精度更高、性能更好
来自 Facebook AI 的严志程团队发表一种新的神经架构的快速搜索算法。该算法采用自适应架构概率分布熵的架构采样,能够减少采样样本达 60%,加速搜索快 1.8 倍。此外,该算法还包括一种新的基于分解概率分布的由粗到细的搜索策略,进一步加速搜索快达 1.2 倍。该算法搜索性能优于 BigNAS、EfficientNet 和 FBNetV2 等算法。就职于 Facebook AI 的严志程博士和他的同事最近在 CVPR 2021 发表了关于加速概率性神经架构搜索的最新工作。该工作提出了一种新的自适应架构分布熵的
4/8/2021 3:12:00 PM
机器之心
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
ChatGPT
AI
AI绘画
DeepSeek
数据
机器人
谷歌
大模型
智能
Midjourney
用户
学习
模型
GPT
开源
微软
AI创作
图像
Meta
技术
论文
Stable Diffusion
马斯克
算法
生成式
蛋白质
芯片
Gemini
代码
神经网络
计算
腾讯
研究
Sora
AI设计
3D
开发者
GPU
AI for Science
英伟达
机器学习
场景
伟达
预测
华为
Transformer
模态
Anthropic
百度
驾驶
深度学习
文本
AI视频
苹果
搜索
神器推荐
算力
LLaMA
科技
视频生成
安全
应用
xAI
干货合集
Copilot
2024
字节跳动
特斯拉
人形机器人
具身智能
亚马逊
语音
视觉
AI应用场景
写作
AGI
Claude