Former
加速蛋白质工程,微软开发蛋白突变效应预测AI框架µFormer
编辑 | KX蛋白质工程是合成生物学领域的重要研究方向之一。近年来,AI 辅助的蛋白质工程逐渐发展成为一种高效的蛋白质分子设计新策略。近日,微软研究院科学智能中心的研究人员提出了深度学习框架 µFormer,其将预训练的蛋白质语言模型与定制设计的评分模块相结合,从而预测蛋白质的突变效应。µFormer 在预测高阶突变体、建模上位(epistatic)相互作用和处理插入方面,实现了最先进的性能。通过将 µFormer 与强化学习框架相结合,可以高效探索广阔的突变空间,涵盖数万亿个突变候选物,来设计活性增强的蛋白质变体
9/14/2024 2:18:00 PM
ScienceAI
- 1
资讯热榜
标签云
人工智能
OpenAI
AIGC
AI
ChatGPT
DeepSeek
AI绘画
数据
机器人
谷歌
模型
大模型
Midjourney
智能
用户
学习
开源
GPT
微软
Meta
AI创作
图像
技术
论文
Stable Diffusion
马斯克
Gemini
算法
蛋白质
生成式
芯片
代码
英伟达
腾讯
神经网络
计算
研究
Sora
AI for Science
3D
Anthropic
AI设计
机器学习
GPU
开发者
场景
华为
预测
伟达
Transformer
百度
苹果
深度学习
AI视频
模态
人形机器人
xAI
驾驶
字节跳动
文本
搜索
大语言模型
Claude
Copilot
具身智能
神器推荐
LLaMA
算力
安全
应用
视频生成
科技
视觉
亚马逊
干货合集
2024
AGI
特斯拉
训练
大型语言模型