FLock

模型被投毒攻击,如今有了新的安全手段,还被AI顶刊接收

在深度学习时代,联邦学习(FL)提供了一种分布式的协作学习的方法,允许多机构数据所有者或客户在不泄漏数据隐私的情况下协作训练机器学习模型。然而,大多数现有的 FL 方法依赖于集中式服务器进行全局模型聚合,从而导致单点故障。这使得系统在与不诚实的客户打交道时容易受到恶意攻击。本文中,FLock 系统采用了点对点投票机制和奖励与削减机制,这些机制由链上智能合约提供支持,以检测和阻止恶意行为。FLock 理论和实证分析都证明了所提出方法的有效性,表明该框架对于恶意客户端行为具有鲁棒性。现今,机器学习(ML),更具体地说,
  • 1