Finer-CAM
Finer-CAM:让AI像‘找不同’一样精准捕捉细粒度特征!
一眼概览Finer-CAM 是一种改进的类激活映射(CAM)方法,能够精准定位区分视觉上相似类别的细粒度特征,在不增加计算复杂度的情况下,大幅提升可解释性。 核心问题传统的 CAM 方法在细粒度分类任务中往往会高亮整个目标区域,而无法有效区分相似类别之间的细微差异。 这导致模型的可解释性受限,难以识别用于决策的真正判别特征。
AI界的“火眼金睛”!Finer-CAM让AI理解图像更精准,分类更清晰
人工智能在图像识别领域那是卷得飞起,分类猫猫狗狗早就Out啦,现在流行的是“连连看”Plus版,比如一眼认出这是哪一年的哪个型号的跑车,或者这只鸟的眉毛是不是比隔壁老王的粗那么一丢丢。 可问题来了,神经网络它“聪明”是聪明,但让它说清楚“我凭啥说这是这个?”的时候,就有点像学渣被问解题思路,支支吾吾半天憋不出个所以然。 传统的Class Activation Map(CAM)就像是给神经网络脑袋上戴了个发光圈,告诉你“嗯,它主要看这块儿了”,但具体看啥?为啥看这儿?遇到“双胞胎”级别的细微差别,它就直接懵圈了,指着一堆相似的地方说“大概…是这儿吧…也许…”。
- 1